TianoCore EDK2 master
Loading...
Searching...
No Matches
AesCore.c
Go to the documentation of this file.
1
11#include "AesCore.h"
12
13//
14// Number of columns (32-bit words) comprising the State.
15// AES_NB is a constant (value = 4) for NIST FIPS-197.
16//
17#define AES_NB 4
18
19//
20// Pre-computed AES Forward Table: AesForwardTable[t] = AES_SBOX[t].[02, 01, 01, 03]
21// AES_SBOX (AES S-box) is defined in sec 5.1.1 of FIPS PUB 197.
22// This is to speed up execution of the cipher by combining SubBytes and
23// ShiftRows with MixColumns steps and transforming them into table lookups.
24//
25GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT32 AesForwardTable[] = {
26 0xc66363a5, 0xf87c7c84, 0xee777799, 0xf67b7b8d, 0xfff2f20d, 0xd66b6bbd,
27 0xde6f6fb1, 0x91c5c554, 0x60303050, 0x02010103, 0xce6767a9, 0x562b2b7d,
28 0xe7fefe19, 0xb5d7d762, 0x4dababe6, 0xec76769a, 0x8fcaca45, 0x1f82829d,
29 0x89c9c940, 0xfa7d7d87, 0xeffafa15, 0xb25959eb, 0x8e4747c9, 0xfbf0f00b,
30 0x41adadec, 0xb3d4d467, 0x5fa2a2fd, 0x45afafea, 0x239c9cbf, 0x53a4a4f7,
31 0xe4727296, 0x9bc0c05b, 0x75b7b7c2, 0xe1fdfd1c, 0x3d9393ae, 0x4c26266a,
32 0x6c36365a, 0x7e3f3f41, 0xf5f7f702, 0x83cccc4f, 0x6834345c, 0x51a5a5f4,
33 0xd1e5e534, 0xf9f1f108, 0xe2717193, 0xabd8d873, 0x62313153, 0x2a15153f,
34 0x0804040c, 0x95c7c752, 0x46232365, 0x9dc3c35e, 0x30181828, 0x379696a1,
35 0x0a05050f, 0x2f9a9ab5, 0x0e070709, 0x24121236, 0x1b80809b, 0xdfe2e23d,
36 0xcdebeb26, 0x4e272769, 0x7fb2b2cd, 0xea75759f, 0x1209091b, 0x1d83839e,
37 0x582c2c74, 0x341a1a2e, 0x361b1b2d, 0xdc6e6eb2, 0xb45a5aee, 0x5ba0a0fb,
38 0xa45252f6, 0x763b3b4d, 0xb7d6d661, 0x7db3b3ce, 0x5229297b, 0xdde3e33e,
39 0x5e2f2f71, 0x13848497, 0xa65353f5, 0xb9d1d168, 0x00000000, 0xc1eded2c,
40 0x40202060, 0xe3fcfc1f, 0x79b1b1c8, 0xb65b5bed, 0xd46a6abe, 0x8dcbcb46,
41 0x67bebed9, 0x7239394b, 0x944a4ade, 0x984c4cd4, 0xb05858e8, 0x85cfcf4a,
42 0xbbd0d06b, 0xc5efef2a, 0x4faaaae5, 0xedfbfb16, 0x864343c5, 0x9a4d4dd7,
43 0x66333355, 0x11858594, 0x8a4545cf, 0xe9f9f910, 0x04020206, 0xfe7f7f81,
44 0xa05050f0, 0x783c3c44, 0x259f9fba, 0x4ba8a8e3, 0xa25151f3, 0x5da3a3fe,
45 0x804040c0, 0x058f8f8a, 0x3f9292ad, 0x219d9dbc, 0x70383848, 0xf1f5f504,
46 0x63bcbcdf, 0x77b6b6c1, 0xafdada75, 0x42212163, 0x20101030, 0xe5ffff1a,
47 0xfdf3f30e, 0xbfd2d26d, 0x81cdcd4c, 0x180c0c14, 0x26131335, 0xc3ecec2f,
48 0xbe5f5fe1, 0x359797a2, 0x884444cc, 0x2e171739, 0x93c4c457, 0x55a7a7f2,
49 0xfc7e7e82, 0x7a3d3d47, 0xc86464ac, 0xba5d5de7, 0x3219192b, 0xe6737395,
50 0xc06060a0, 0x19818198, 0x9e4f4fd1, 0xa3dcdc7f, 0x44222266, 0x542a2a7e,
51 0x3b9090ab, 0x0b888883, 0x8c4646ca, 0xc7eeee29, 0x6bb8b8d3, 0x2814143c,
52 0xa7dede79, 0xbc5e5ee2, 0x160b0b1d, 0xaddbdb76, 0xdbe0e03b, 0x64323256,
53 0x743a3a4e, 0x140a0a1e, 0x924949db, 0x0c06060a, 0x4824246c, 0xb85c5ce4,
54 0x9fc2c25d, 0xbdd3d36e, 0x43acacef, 0xc46262a6, 0x399191a8, 0x319595a4,
55 0xd3e4e437, 0xf279798b, 0xd5e7e732, 0x8bc8c843, 0x6e373759, 0xda6d6db7,
56 0x018d8d8c, 0xb1d5d564, 0x9c4e4ed2, 0x49a9a9e0, 0xd86c6cb4, 0xac5656fa,
57 0xf3f4f407, 0xcfeaea25, 0xca6565af, 0xf47a7a8e, 0x47aeaee9, 0x10080818,
58 0x6fbabad5, 0xf0787888, 0x4a25256f, 0x5c2e2e72, 0x381c1c24, 0x57a6a6f1,
59 0x73b4b4c7, 0x97c6c651, 0xcbe8e823, 0xa1dddd7c, 0xe874749c, 0x3e1f1f21,
60 0x964b4bdd, 0x61bdbddc, 0x0d8b8b86, 0x0f8a8a85, 0xe0707090, 0x7c3e3e42,
61 0x71b5b5c4, 0xcc6666aa, 0x904848d8, 0x06030305, 0xf7f6f601, 0x1c0e0e12,
62 0xc26161a3, 0x6a35355f, 0xae5757f9, 0x69b9b9d0, 0x17868691, 0x99c1c158,
63 0x3a1d1d27, 0x279e9eb9, 0xd9e1e138, 0xebf8f813, 0x2b9898b3, 0x22111133,
64 0xd26969bb, 0xa9d9d970, 0x078e8e89, 0x339494a7, 0x2d9b9bb6, 0x3c1e1e22,
65 0x15878792, 0xc9e9e920, 0x87cece49, 0xaa5555ff, 0x50282878, 0xa5dfdf7a,
66 0x038c8c8f, 0x59a1a1f8, 0x09898980, 0x1a0d0d17, 0x65bfbfda, 0xd7e6e631,
67 0x844242c6, 0xd06868b8, 0x824141c3, 0x299999b0, 0x5a2d2d77, 0x1e0f0f11,
68 0x7bb0b0cb, 0xa85454fc, 0x6dbbbbd6, 0x2c16163a
69};
70
71//
72// Round constant word array used in AES key expansion.
73//
75 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000,
76 0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000
77};
78
79//
80// Rotates x right n bits (circular right shift operation)
81//
82#define ROTATE_RIGHT32(x, n) (((x) >> (n)) | ((x) << (32-(n))))
83
84//
85// Loading & Storing 32-bit words in big-endian format: y[3..0] --> x; x --> y[3..0];
86//
87#define LOAD32H(x, y) { x = ((UINT32)((y)[0] & 0xFF) << 24) | ((UINT32)((y)[1] & 0xFF) << 16) | \
88 ((UINT32)((y)[2] & 0xFF) << 8) | ((UINT32)((y)[3] & 0xFF)); }
89#define STORE32H(x, y) { (y)[0] = (UINT8)(((x) >> 24) & 0xFF); (y)[1] = (UINT8)(((x) >> 16) & 0xFF); \
90 (y)[2] = (UINT8)(((x) >> 8) & 0xFF); (y)[3] = (UINT8)((x) & 0xFF); }
91
92//
93// Wrap macros for AES forward tables lookups
94//
95#define AES_FT0(x) AesForwardTable[x]
96#define AES_FT1(x) ROTATE_RIGHT32(AesForwardTable[x], 8)
97#define AES_FT2(x) ROTATE_RIGHT32(AesForwardTable[x], 16)
98#define AES_FT3(x) ROTATE_RIGHT32(AesForwardTable[x], 24)
99
103typedef struct {
104 UINTN Nk; // Number of Cipher Key (in 32-bit words);
105 UINT32 EncKey[60]; // Expanded AES encryption key
106 UINT32 DecKey[60]; // Expanded AES decryption key (Not used here)
107} AES_KEY;
108
122EFIAPI
124 IN UINT8 *Key,
125 IN UINTN KeyLenInBits,
126 OUT AES_KEY *AesKey
127 )
128{
129 UINTN Nk;
130 UINTN Nr;
131 UINTN Nw;
132 UINTN Index1;
133 UINTN Index2;
134 UINTN Index3;
135 UINT32 *Ek;
136 UINT32 Temp;
137
138 //
139 // Nk - Number of 32-bit words comprising the cipher key. (Nk = 4, 6 or 8)
140 // Nr - Number of rounds. (Nr = 10, 12, or 14), which is dependent on the key size.
141 //
142 Nk = KeyLenInBits >> 5;
143 if ((Nk != 4) && (Nk != 6) && (Nk != 8)) {
144 return EFI_INVALID_PARAMETER;
145 }
146
147 Nr = Nk + 6;
148 Nw = AES_NB * (Nr + 1); // Key Expansion generates a total of Nb * (Nr + 1) words
149 AesKey->Nk = Nk;
150
151 //
152 // Load initial symmetric AES key;
153 // Note that AES was designed on big-endian systems.
154 //
155 Ek = AesKey->EncKey;
156 for (Index1 = Index2 = 0; Index1 < Nk; Index1++, Index2 += 4) {
157 LOAD32H (Ek[Index1], Key + Index2);
158 }
159
160 //
161 // Initialize the encryption key scheduler
162 //
163 for (Index2 = Nk, Index3 = 0; Index2 < Nw; Index2 += Nk, Index3++) {
164 Temp = Ek[Index2 - 1];
165 Ek[Index2] = Ek[Index2 - Nk] ^ (AES_FT2 ((Temp >> 16) & 0xFF) & 0xFF000000) ^
166 (AES_FT3 ((Temp >> 8) & 0xFF) & 0x00FF0000) ^
167 (AES_FT0 ((Temp) & 0xFF) & 0x0000FF00) ^
168 (AES_FT1 ((Temp >> 24) & 0xFF) & 0x000000FF) ^
169 Rcon[Index3];
170 if (Nk <= 6) {
171 //
172 // If AES Cipher Key is 128 or 192 bits
173 //
174 for (Index1 = 1; Index1 < Nk && (Index1 + Index2) < Nw; Index1++) {
175 Ek[Index1 + Index2] = Ek[Index1 + Index2 - Nk] ^ Ek[Index1 + Index2 - 1];
176 }
177 } else {
178 //
179 // Different routine for key expansion If Cipher Key is 256 bits,
180 //
181 for (Index1 = 1; Index1 < 4 && (Index1 + Index2) < Nw; Index1++) {
182 Ek[Index1 + Index2] = Ek[Index1 + Index2 - Nk] ^ Ek[Index1 + Index2 - 1];
183 }
184
185 if (Index2 + 4 < Nw) {
186 Temp = Ek[Index2 + 3];
187 Ek[Index2 + 4] = Ek[Index2 + 4 - Nk] ^ (AES_FT2 ((Temp >> 24) & 0xFF) & 0xFF000000) ^
188 (AES_FT3 ((Temp >> 16) & 0xFF) & 0x00FF0000) ^
189 (AES_FT0 ((Temp >> 8) & 0xFF) & 0x0000FF00) ^
190 (AES_FT1 ((Temp) & 0xFF) & 0x000000FF);
191 }
192
193 for (Index1 = 5; Index1 < Nk && (Index1 + Index2) < Nw; Index1++) {
194 Ek[Index1 + Index2] = Ek[Index1 + Index2 - Nk] ^ Ek[Index1 + Index2 - 1];
195 }
196 }
197 }
198
199 return EFI_SUCCESS;
200}
201
214EFIAPI
216 IN UINT8 *Key,
217 IN UINT8 *InData,
218 OUT UINT8 *OutData
219 )
220{
221 AES_KEY AesKey;
222 UINTN Nr;
223 UINT32 *Ek;
224 UINT32 State[4];
225 UINT32 TempState[4];
226 UINT32 *StateX;
227 UINT32 *StateY;
228 UINT32 *Temp;
229 UINTN Index;
230 UINTN NbIndex;
231 UINTN Round;
232
233 if ((Key == NULL) || (InData == NULL) || (OutData == NULL)) {
234 return EFI_INVALID_PARAMETER;
235 }
236
237 //
238 // Expands AES Key for encryption.
239 //
240 AesExpandKey (Key, 128, &AesKey);
241
242 Nr = AesKey.Nk + 6;
243 Ek = AesKey.EncKey;
244
245 //
246 // Initialize the cipher State array with the initial round key
247 //
248 for (Index = 0; Index < AES_NB; Index++) {
249 LOAD32H (State[Index], InData + 4 * Index);
250 State[Index] ^= Ek[Index];
251 }
252
253 NbIndex = AES_NB;
254 StateX = State;
255 StateY = TempState;
256
257 //
258 // AES Cipher transformation rounds (Nr - 1 rounds), in which SubBytes(),
259 // ShiftRows() and MixColumns() operations were combined by a sequence of
260 // table lookups to speed up the execution.
261 //
262 for (Round = 1; Round < Nr; Round++) {
263 StateY[0] = AES_FT0 ((StateX[0] >> 24)) ^ AES_FT1 ((StateX[1] >> 16) & 0xFF) ^
264 AES_FT2 ((StateX[2] >> 8) & 0xFF) ^ AES_FT3 ((StateX[3]) & 0xFF) ^ Ek[NbIndex];
265 StateY[1] = AES_FT0 ((StateX[1] >> 24)) ^ AES_FT1 ((StateX[2] >> 16) & 0xFF) ^
266 AES_FT2 ((StateX[3] >> 8) & 0xFF) ^ AES_FT3 ((StateX[0]) & 0xFF) ^ Ek[NbIndex + 1];
267 StateY[2] = AES_FT0 ((StateX[2] >> 24)) ^ AES_FT1 ((StateX[3] >> 16) & 0xFF) ^
268 AES_FT2 ((StateX[0] >> 8) & 0xFF) ^ AES_FT3 ((StateX[1]) & 0xFF) ^ Ek[NbIndex + 2];
269 StateY[3] = AES_FT0 ((StateX[3] >> 24)) ^ AES_FT1 ((StateX[0] >> 16) & 0xFF) ^
270 AES_FT2 ((StateX[1] >> 8) & 0xFF) ^ AES_FT3 ((StateX[2]) & 0xFF) ^ Ek[NbIndex + 3];
271
272 NbIndex += 4;
273 Temp = StateX;
274 StateX = StateY;
275 StateY = Temp;
276 }
277
278 //
279 // Apply the final round, which does not include MixColumns() transformation
280 //
281 StateY[0] = (AES_FT2 ((StateX[0] >> 24)) & 0xFF000000) ^ (AES_FT3 ((StateX[1] >> 16) & 0xFF) & 0x00FF0000) ^
282 (AES_FT0 ((StateX[2] >> 8) & 0xFF) & 0x0000FF00) ^ (AES_FT1 ((StateX[3]) & 0xFF) & 0x000000FF) ^
283 Ek[NbIndex];
284 StateY[1] = (AES_FT2 ((StateX[1] >> 24)) & 0xFF000000) ^ (AES_FT3 ((StateX[2] >> 16) & 0xFF) & 0x00FF0000) ^
285 (AES_FT0 ((StateX[3] >> 8) & 0xFF) & 0x0000FF00) ^ (AES_FT1 ((StateX[0]) & 0xFF) & 0x000000FF) ^
286 Ek[NbIndex + 1];
287 StateY[2] = (AES_FT2 ((StateX[2] >> 24)) & 0xFF000000) ^ (AES_FT3 ((StateX[3] >> 16) & 0xFF) & 0x00FF0000) ^
288 (AES_FT0 ((StateX[0] >> 8) & 0xFF) & 0x0000FF00) ^ (AES_FT1 ((StateX[1]) & 0xFF) & 0x000000FF) ^
289 Ek[NbIndex + 2];
290 StateY[3] = (AES_FT2 ((StateX[3] >> 24)) & 0xFF000000) ^ (AES_FT3 ((StateX[0] >> 16) & 0xFF) & 0x00FF0000) ^
291 (AES_FT0 ((StateX[1] >> 8) & 0xFF) & 0x0000FF00) ^ (AES_FT1 ((StateX[2]) & 0xFF) & 0x000000FF) ^
292 Ek[NbIndex + 3];
293
294 //
295 // Output the transformed result;
296 //
297 for (Index = 0; Index < AES_NB; Index++) {
298 STORE32H (StateY[Index], OutData + 4 * Index);
299 }
300
301 return EFI_SUCCESS;
302}
UINT64 UINTN
EFI_STATUS EFIAPI AesExpandKey(IN UINT8 *Key, IN UINTN KeyLenInBits, OUT AES_KEY *AesKey)
Definition: AesCore.c:123
EFI_STATUS EFIAPI AesEncrypt(IN UINT8 *Key, IN UINT8 *InData, OUT UINT8 *OutData)
Definition: AesCore.c:215
#define NULL
Definition: Base.h:319
#define CONST
Definition: Base.h:259
#define IN
Definition: Base.h:279
#define OUT
Definition: Base.h:284
#define GLOBAL_REMOVE_IF_UNREFERENCED
Definition: Base.h:48
RETURN_STATUS EFI_STATUS
Definition: UefiBaseType.h:29
#define EFI_SUCCESS
Definition: UefiBaseType.h:112